
'THE STROKE OF AN OAR GIVEN IN TRUE TIME'

The Martian orbit.

The following diagram compares the orbits of Earth and Mars, plotted roughly to scale.

Legend:

$\gamma \quad$ First point of Aries
$\Omega \quad$ Ascending node of Martian orbit
$\Delta \quad$ Descending node of Martian orbit
$\eta \quad$ Position of Earth or Mars at northern vernal equinox
$\phi \quad$ Position of Earth or Mars at northern autumnal equinox
$\theta \quad$ Position of Earth or Mars at northern summer solstice
$\chi \quad$ Position of Earth or Mars at northern winter solstice
$\alpha \quad$ Aphelion of Martian orbit
© Perihelion of Martian orbit
L Mean longitude of Earth or Mars at epoch J2000
PM Longitude of Martian prime meridian

The positions shown in the diagram are for the J2000 epoch, namely, AD 2000 January 1 UT 12 h , or JD 2451545.0.
The figures cited here for the orbits and rotational elements of Earth and Mars are from [1]. Distances in the Solar System are measured in Astronomical Units, the mean distance of the Earth from the Sun, namely $149,598,000 \mathrm{~km}$, or $92,956,000 \mathrm{mi}$. Mars orbits the Sun in an elliptical orbit. Its semi-major axis (half of its long or major axis) is 1.52368 AU or $227,939,000 \mathrm{~km}(141,635,000 \mathrm{mi})$. Because solar power is inversely proportional to the distance from the Sun, Mars receives on the average 43% of the solar power that the Earth does, and consequently is much colder - so much so that at the poles, the carbon dioxide in the atmosphere freezes out as dry ice.

From 'A Calendar for Mars' by Rev. George D. Lardas.
http://fortnightlyreview.co.uk/2012/08/martian-calendar/

